Полный факторный эксперимент
Эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом (ПФЭ). Число возможных сочетаний уровней (или число опытов) определяется по формуле N = pn, где р — число уровней; п — число факторов.
Рассмотрим свойства и особенности факторного планирования на простых примерах.
Пример 1
Полный фактор эксперимента при n = 2 и p = 2. Рассмотрим описание модели второго порядка
Y = b0x0 + b1x1 + b2х2 + b3х3 + b4x4 + b5х5.
Число строк (опытов) в матрице планирования N = 22 = 4, а максимальное число столбцов — 6. Собственно план эксперимента определяется числом факторов — их два X1 и Х2. Остальные столбцы матрицы планирования являются производными столбцов х1 и x2. План эксперимента формируется так, чтобы выполнить условие ортогональности — сумма элементов каждого столбца плана эксперимента должна равняться нулю, т.е.
Это достигается чередованием знаков в столбце х1, а в каждом последующем столбце плана эксперимента частота чередования вдвое уменьшается по сравнению с предыдущим столбцом.
Отметим особенность матрицы планирования. Исходная модель требует определения шести коэффициентов (b0 — b5), Следовательно, должно быть шесть уравнений (или шесть столбцов). Но различных столбцов всего четыре, что соответствует числу строк.
Однако число различных столбцов равно числу членов аппроксимирующего полинома (*), включая все возможные взаимодействия (в нашем примере одно взаимодействие b12x1x2). Вывод ПФЭ 22 позволяет определить все коэффициенты полинома при линейных членах и всех возможных взаимодействиях факторов (включая в общем случае взаимодействие максимально высокого порядка x1, x2, …, xn).
То, что столбцы 4 и 5 одинаковы и совпадают с нулевым столбцом свидетельствует о том, что рассматриваемый ПФЭ (и все ПФЭ 2n) не позволяет определить все коэффициенты, в частности коэффициенты при Xi2, точнее невозможно независимо определить коэффициенты b0, b11 и b22, т.е. получается смешанная оценка коэффициентов.
Такие планы ПФЭ называют планами первого порядка, так как они позволяют определить коэффициенты лишь при факторах в первой степени.
Отсюда вытекает практическая рекомендация — в планах ПФЭ 23 и больших степеней нет смысла формировать столбцы для квадратов факторов xi.
Пример 2. Полный фактор эксперимента при n = 3 и p = 2. Модель принимает вид
Y = b0 + b1x1+b2x2+b3x3+b4x4+b5x5+b6x6+b7x7
В этом случае N=23=8, т.е. будет восемь строк в матрице планирования.
Из матриц планирования следует характерное для ПФЭ 2n соотношение
т.е. сумма квадратов значений факторов в каждом столбце равна числу опытов N. С учетом этого формула (5.11) для вычисления коэффициентов упрощается и принимает вид
Точки планов ПФЭ 2n располагаются в вершинах квадрата, куба или в общем случае гиперкуба.
Анализируя ПФЭ рn, легко заметить, что с ростом числа уровней факторов р и, особенно, с ростом числа факторов n число опытов, предусмотренных планом, будет существенно превышать число искомых коэффициентов, т.е. ПФЭ дает избыточную информацию. Можно ли более экономно организовать эксперимент? Это можно сделать посредством рассмотрения дробных реплик ПФЭ.